GIGABYTE GA-7PESH3 Conclusion

If we take the PC industry as a whole, and strip out the server and low end markets, the system-under-the-desk market is that mix of medium volume with medium pricing (vs. 100 million tablets or $1m racks). Of what is left, very few need a Xeon system and even fewer of that margin needs to use a dual processor arrangement. This is the realm of the 2P workstation, which GIGABYTE is trying to harness with the GA-7PESH3.

We are actually reviewing the GA-7PESH3 relatively late in its product cycle. We reported on the initial release back in January 2013, as the evolutionary successor to the GA-7PESH1 (which we reviewed here, also in 01/2013) intended for Sandy Bridge-E and Ivy Bridge-E Xeons. Workstation users are not often ones to upgrade at the immediate release of a new architecture unless the cost can be justified, so the relevance of the GA-7PESH3 is still important when the professional level of Haswell-E is around the corner.

For these 2P workstations, only Xeons will do. This also means the cost of the workstation shifts primarily towards CPUs, DRAM and add-in cards making the motherboard cost a rather small factor in the build. The GIGABYTE Server business unit typically sells to OEMs designing systems, but in selling to the public via retailers like Newegg, they come under increased scrutiny: users building their own workstations (or IT professionals building them for the company) will want to get the best of everything, no matter what the cost.

The GA-7PESH3 is designed to form the basis of a compute machine, rather than a virtualization workstation. The one-DIMM per channel memory arrangement, due to the size of the motherboard, limits users who need memory intensive virtual machines but might form the basis of a VM workstation for a small office for users who need lighter applications. This is also supported by the extended PCIe support across all seven full-length PCIe lanes, suggesting that seven single-slot GPUs, FPGAs, PCIe storage or RAID cards can be used. This can allow for a few VM users per card or one super user who needs specialist support.  The only other issue that arises here is that the motherboard has no extra power connectors for the PCIe slots, suggesting that if all the slots needed to draw the 75W as specified by the PCIe 3.0 standard, then 525W through the 24-pin ATX connector will start to cause issues. On the consumer motherboard side, we take issue when a 4-way SLI motherboard does not have an extra power connector, and this an obvious flaw.

Aside from the RAID card potential, the motherboard gives SAS and SAS a fair share of the board space, giving 8 and 6 ports respectively. Extra onboard Type-A USB 3.0 ports are present for software license dongles, with a USB 3.0 header to be used in conjunction with the 3.5-inch USB front-panel bracket included. Audio is via a Realtek ALC892 codec, and dual Intel 82574L GbE NICs provide connectivity. Like other boards in this segment, management is provided by an Aspeed IC via a network port, in this case running MergePoint software.

In general, workstation and server type motherboards tend to do badly in our tests. DPC Latency, audio results, power consumption, POST time and USB speed all fall below a standard consumer level product, with the BIOS and software packages limited. This seems a bit strange if you are coming from the consumer world, but motherboards like the GA-7PESH3 are built to do a job: provide support for dual Xeons, ECC/RDIMM memory, plenty of add-in cards, run 24/7 and a long-term warranty. End-user customers will get a 3-years warranty, while business users will have to discuss with GIGABYTE their long term needs.

GIGABYTE is improving the ecosystem around its Server range in recent quarters, with compatible Chenbro chassis as well as add-in cards for various networking (10 GbE) or storage (RAID/SAS) functions. However GIGABYTE’s main competition will be that $640 ends up quite expensive for a consumer purchase. Other competitors orient the CPU sockets for server use with restricted rear panel connectors and no audio, albeit with similar PCIe slot counts and at half the price. That might be a bit too much of a hurdle to overcome for the 7PESH3, but after looking at Newegg’s list of 2P LGA2011-0 motherboards as well as our testing, the GA-7PESH3’s main selling point will be the seven full length PCIe slots in a workstation form factor that also offers a proper rear panel IO and support for DDR3-1866 memory.

GIGABYTE's server division has told us that they are updating their line for Grantley (Haswell-E Xeons) sometime soon, however the 7PESH3 will remain on the market due to the extended lifecycle of the platform. Should there be a favorable price difference to move Ivy Bridge-E Xeon stock ahead of the Grantley release, motherboards like this come into play as a compute bound user might plan an upgrade if they still rely on a dual 1366 system.

Gaming Benchmarks
Comments Locked

35 Comments

View All Comments

  • tuxRoller - Thursday, September 4, 2014 - link

    So, you've got a workstation class board but are running Windows 8...
    Is it so difficult to throw centos on there for the benefit of those working at Pixar?
  • MrSpadge - Friday, September 5, 2014 - link

    Those working at Pixar likely won't need an Ivy-EP review. Apart from that.. I'm sure Ian is glad not to have to deal with CentOS :p
  • tuxRoller - Friday, September 5, 2014 - link

    Centos is easy to setup, and the new release is quite nice.
    My point with Pixar was that there are many serious creators who use Linux workstations, and not just for simulations. Unless you work in the area it's possible you may not know the prevalence of Linux among workstations, especially relative to windows 8, in my experience.
    That aside, seeing the comparative performance numbers of the two OS's is useful to get an idea of what the hardware itself can do.
  • mpbrede - Friday, September 5, 2014 - link

    I really hope that this crappy grammar is just an indication of haste and not of lower editorial standards now that Anand has left the room.

    "As a result, gaming often sees a hit in performance, as well as basic tasks." -> ...result, gaming, as well as basic tasks, sees a hit...

    "Interestingly GIGABYTE does not supply any extra power connectors for these PCIe slots, indicating that not each port might not be able to provide 75W when all are populated (e.g. seven graphics cards)." -> read it slowly, how many "nots" should there be in a single sentence?
  • aryonoco - Friday, September 5, 2014 - link

    A server/workstation motherboard requires its own benchmarks.

    For anyone who is in the target market of this product, this review is absolutely worthless. Gaming benchmarks? Really?!
  • colonelclaw - Friday, September 5, 2014 - link

    Thanks for the review. In the future please consider including the following benchmarks:
    3DSMax + Vray, Maya + VRay/Arnold/Renderman, Adobe Media Encoder, Adobe After Effects, Adobe Premiere Pro. Some VRay RT and Octane multi-GPU benchmarks would be a nice addition, too.
    The one thing I find slightly strange about this motherboard is the low number of memory slots. All our DP motherboards have twice as many per processor (and many are full). I wonder why Gigabyte decided on just eight?
  • eanazag - Friday, September 5, 2014 - link

    I think the point of making the board where the CPUs line up was to allow better airflow to the add-on cards (GPUs). Lining up the CPUs didn't allow for the normal # of mem. slots.

    In actuality I would think most buyers of this board would just go with one CPU. It allows for the video compute cards to have more juice from the ATX 24 pin. I have bought 2P boards for one proc because of the peripheral items like slots, networking, RAID, and built-in network management. When you look at non-server boards and add the pricing of add-on management it starts to make you consider the server/workstation board.
  • The Von Matrices - Friday, September 5, 2014 - link

    The reason for this is because Gigabyte chose to use square ILM sockets.

    For those who do not know, LGA2011 has two sockets - square ILM and narrow ILM. Most consumer motherboards use the square ILM sockets; you only see the narrow ILM sockets in servers. The narrow ILM socket is obviously narrower, which allows more memory slots on the same size motherboard. The disadvantage of the narrow ILM socket is that the memory slots are so close to the processor that large and quiet tower heatsinks can't be used since they cover the closest memory slots.

    Basically, when designing a dual LGA2011 SSI CEB motherboard, you have to choose two of the three following features:

    16 DIMM slots
    7 PCIe slots
    Square ILM sockets

    If you use 16 DIMMs and 7 PCIe slots, you have to use narrow ILM sockets, which eliminates the use of tower heatsinks.

    If you use 7 PCIe slots and square ILM sockets (like Gigabyte did) you now can use tower heatsinks. However, then there is only enough space on the motherboard for 8 or 12 DIMM slots.

    If you use 16 DIMMs and square ILM sockets, there's only enough space on the motherboard for 6 PCIe slots.
  • joannecdinkins - Friday, September 5, 2014 - link

    just as Larry answered I didnt even know that people able to get paid $6104 in a few weeks on the internet .
    go to this site>>>>> paygazette.ℭOM
  • KAlmquist - Friday, September 5, 2014 - link

    One thing that's not addressed in this review is whether it makes sense to run Windows 7 on a multi-socket system. The benchmarks showing dual E5-2687W processors running significantly slower than a single E5-2687W suggest that Windows 7 is making bad scheduling decisions. Would Windows Server or Linux do better?

    Let me explain my point about scheduling decisions in a bit more detail. If you run a piece of software on a system with a single processor, the operating system has to make decisions about when to run each thread, and which core to run it on. Now switch to a system which is similar to the first system except that it has two processors. If the operating system simply ignores the second processor, and makes the same scheduling decisions as it made on the first system, then the performance of the two systems should be quite close. I'm not suggesting that this approach to scheduling on a dual processors system makes sense, but it is a possible approach. So if the approach to scheduling used by Windows 7 results in even worse performance, we know that Windows 7 could do better. In fairness to Microsoft, Windows 7 is not marketed as a server OS, so maybe it shouldn't be expected to perform well on server hardware.

Log in

Don't have an account? Sign up now